Ageing populations worldwide mean that, with the current trends, the burden of dementia-related disease risks sinking modern healthcare practice. Dementia currently affects 34 million individuals worldwide. Continuation of the status quo will see an almost quadrupling by 2050, devastating the lives of several million patients, along with the associated effects on their families and friends. Dementia being a terminal illness, it is likely that dementia and other age-related neurodegenerative disorders will become the leading cause of death within this timeframe. Driving these changes is the ageing of modern society, and also the nexus between advanced age and dementia risk: dementia prevalence is 0.9% in people aged 60 to 64 years, rising to 12.2% in those aged 80 to 84 years, and to more than 35.7% in those over 90 years of age. The sustainability of current healthcare practice and funding will therefore come under severe strain, as already witnessed in some countries.

To avert these dire predictions, a healthy brain ageing agenda needs to rise to prominence at all levels of medical practice, among health policy makers and in the wider community. There are several preventive actions that GPs can encourage to help mitigate dementia risk. Given that many of the aetiological factors implicated in dementia begin 20 to 30 years before symptom onset, for maximum effectiveness GPs need to target not only those people already in the at-risk older age range but also those in their forties and fifties.

Cognitive lifestyle and brain health

Cognitive lifestyle refers to a person’s history and ongoing engagement with complex mental activities. In practical terms, it is defined in relation to educational activities and occupational challenge and complexity as well as cognitive-loaded leisure activities. In a systematic review of 22 long term cohort studies, it has been found that each of these three major components of cognitive lifestyle was associated with reduced risk of incident dementia by between 40% and 50%. Overall, a more active cognitive lifestyle was linked to a 46% reduction in incident dementia compared with an impoverished cognitive lifestyle.

The link between cognitive lifestyle and dementia risk has since been replicated in numerous studies, including the large Cognitive Function and Ageing Study (CFAS) based in the United Kingdom, in which more than 13,000 individuals were followed up for more than 13 years. This study showed that no single component of cognitive lifestyle was by itself strongly associated with reduced dementia risk; rather, it was a combination of increased mental activity from the educational, occupational and lifestyle areas that was important — in this study, predictive of a 40% reduction in dementia incidence. Cognitive lifestyle and dementia risk therefore appear to be intimately related.

The possibility that these findings may be explained by ‘reverse causality’, where a drop-off in participation in complex activities occurs during the long prodrome before clinical diagnosis of dementia, is difficult to rule out on the basis of observational studies alone. However, the mechanistic and clinical trials research reviewed below indicates that stimulating an individual’s cogni-
Serez 25, 100, 200, 300 Tablets. Each film-coated tablet contains 25, 100, 200, 300 mg quetiapine respectively. Reg. No. 43/2.6.5/0578, 43/2.6.5/0797, 43/2.6.5/0798, 43/2.6.5/0799. Applicant: Lasara Traders (Pty) Ltd.

Acnetane® 10 mg capsules. A 13.4.2. Each capsule contains 10 mg isotretinoin. Reg. No. 34/13.4.2/0356.

Acnetane® 20 mg capsules. A 13.4.2. Each capsule contains 20 mg isotretinoin. Reg. No. 34/13.4.2/0357.

Adco-Alzam 0,5 mg tablets. A 2.6. Each tablet contains 0,5 mg alprazolam. Reg. No. 30/2.6/0211.

Adco-Talomil tablets. A 20.2.2. Each film-coated tablet contains 25 mg citalopram hydrobromide equivalent to 20 mg citalopram. Reg. No. 35/20.2.2/0036.

Adco-Zetomax 5 mg tablets. A 7.1.3. Each tablet contains lisinopril 5 mg (as the dihydrate salt). Reg. No. 33/7.1.3/0513.

Adco-Zetomax 10 mg tablets. A 7.1.3. Each tablet contains lisinopril 10 mg (as the dihydrate salt). Reg. No. 33/7.1.3/0514.

Adco-Zetomax 20 mg tablets. A 7.1.3. Each tablet contains lisinopril 20 mg (as the dihydrate salt). Reg. No. 33/7.1.3/0515.

Adco-Sporozole capsules. A 20.2.2. Each capsule contains 100 mg of itraconazole. Reg. No. 37/20.2.2/0559.

Adco-Paroxetine 20 mg tablets. A 1.2. Each tablet contains paroxetine mesylate equivalent to 20 mg paroxetine. Reg. No. 36/1.2/0096.

Assessing and improving cognitive lifestyle

Assessment
The Lifetime of Experiences Questionnaire (LEQ) was specifically designed to assess a cognitively intact older person’s cognitive lifestyle. Scores are derived from both retrospective and contemporaneous accounts of educational, occupational and cognitively-demanding lifestyle activities across three phases of life – young adulthood, midlife and late life. Higher LEQ scores indicate a more active cognitive lifestyle and predict both a slower rate of future cognitive decline, as well as a reduced rate of hippocampal atrophy.

Response to assessment
Individuals with a LEQ score of less than 60% are at risk for cognitive decline, and should be specifically encouraged to participate in a new, complex mental activity that requires ongoing learning and social engagement. Although the long term benefits to brain health of commencing such activities are yet to be fully understood, the risks are minimal and potential positive effects may generalise beyond the cognitive to include enhanced mood, self-empowerment and quality of life.

Recommendations for increasing mental activity include:
- learning a new language
- enrolling in a course or formal education
- running a course or teaching others
- learning to play a musical instrument, draw, paint or another artistic pursuit
- learning a new complex skill such as carpentry, embroidery or dancing
- joining a book club
- joining a volunteer organisation
- helping teachers at a local school.

Mechanisms underlying cognitive lifestyle
How might an active cognitive lifestyle lead to reduced rates of dementia? Animal studies suggest many different neuroplastic mechanisms are likely to be involved in this process. For example, an enriched environment for a rodent (including more toys, running wheels and littermates in the animal’s home cage) induces a host of neuroplastic changes in adult animals, even in old age. These changes range from dozens of alterations in gene expression pathways to increased production of neurotrophic hormones, greater synaptic plasticity, upregulated neurogenesis and, controversially, Alzheimer’s disease modification in transgenic models.

The relevance to humans of these findings is only beginning to be understood. In the largest study of its kind, the Epidemiological Clinicopathological Studies in Europe (EClipSE) transnational neuropathology collaboration examined the relation between Alzheimer’s disease pathology, cognitive state and level of education attained in young adulthood. Education was not linked to any measure of neuropathology and so discounts a possible mechanism, Alzheimer’s disease modification. Education did, however, have a dramatic modulatory effect on the link between pathology and cognition. All of the elderly individuals with four to seven years of education, and moderate to severe neuritic plaques in the hippocampus were clinically demented at their ultimate cognitive assessment. In contrast, 43% of those with 12 or more years of education and the same level of hippocampal neuropathology remained dementia-free. A higher level of education in youth may therefore allow individuals to compensate for the build-up of pathology in the brain in later life, to the extent that many will not show clinical symptoms of the pathology.

The frontal lobe is likely to be an important region for mediating these compensatory effects. Our research has found that individuals with a more active cognitive lifestyle have a greater density of neurons in the prefrontal cortex, accompanied by a thicker neocortex in the same region. These results are consistent with neuroimaging studies that show increased frontal lobe cortical activation in individuals who age successfully by virtue of proficient cognitive abilities. Together these results suggest that cortical compensation is an important and possibly uniquely human mechanism.

Interestingly, evidence has also been found for an otherwise overlooked mechanism, modification of cerebrovascular disease. Men with a more active cognitive lifestyle were at 70% to 80% lower risk for lacunes, atherosclerosis and deep white matter lesions in the brain than those with a low cognitive lifestyle, even after accounting for differences in vascular risk factors. Because cerebrovascular disease can itself lead to cognitive impairment and dementia, as well as potentiate the clinical effect of Alzheimer’s disease pathology, an active cognitive lifestyle may lead to lower dementia risk by modifying this disease process.

Clinical trials of brain training
Cognitive or brain training refers to repeated exercise on standardised tasks with an embedded problem or challenge that targets specified cognitive domains. There are many brain training packages available commercially, in either booklet, computer software or internet format, and of vastly variable quality and evidence base.

Cognitive training can be thought of as one of the more focused, specific and, arguably, potent forms of cognitive lifestyle activities. A systematic review of randomised controlled trials of cognitive training with long term follow up in healthy elderly individuals found evidence for a strong and positive effect size on cognitive and functional outcomes, but the field has been limited by small sample sizes and design issues. In mild evidence for possible efficacy of this training, but again the area is notable for the lack of large, high-quality studies.
Dementia prevention: Three take home messages for patients

Population-based health prevention campaigns are notoriously ineffective when dissociated from a feared outcome. GPs and other health professionals have therefore often ignored one of their most effective weapons for driving behavioural change: the almost preternatural fear within the community of developing a neurodegenerative brain disorder. In community surveys, Alzheimer’s disease and dementia are consistently ranked as one of the most feared health conditions.

For this reason, GPs should take the opportunity in consultations with patients to acknowledge that dementia risk increases significantly with age after 65 years and to explain that there are several steps that can be taken to minimise or mitigate this risk. These steps are presented below as three take home messages for patients.

1. **Healthy heart, healthy mind: Don’t ignore hypertension**

 In the community, hypertension is the least well-understood risk factor for dementia. Educate patients that their having high blood pressure when they are aged in their forties and fifties increases their risk of having dementia in their sixties and seventies by two to three times. Treating hypertension at any age reduces the long-term risk of dementia.

2. **Use it or lose it: Take on new activities with a mental and social challenge**

 People often correctly cite mental activity as a modifiable dementia risk factor. Emphasise this to patients by explaining that, like a muscle, the brain requires regular challenging activity in order to remain healthy and strong. Explain that the level of mental challenge needs to be high – crosswords or sudoku is not enough. Greater social engagement is also a strong predictor of decreased dementia risk.

3. **Physical exercise promotes mental fitness**

 Although the benefits of regular physical exercise on general health are obvious, exercise also leads to positive physical changes in the brain. Tell patients this, and explain that regular physical exercise slows the rate of cognitive decline in those individuals most at risk for dementia, and so is one of the most important preventive health activities.

In established dementia, however, there is little evidence for the efficacy of brain training in changing cognitive trajectory. Cognitive training may, therefore, have a useful role in the primary and secondary prevention of dementia, but further research is required.

Rethinking retirement

Brain training is not the only way to boost a person’s cognitive lifestyle. There are a host of lifestyle activities with inherent cognitive demands that may also be effective (see box).

One of these activities is volunteerism, as illustrated by the Experience Corps study. This study of older cognitively-intact African American women at increased risk for dementia because of one or more cardiovascular disease risk factors found that volunteer activity at a local primary school produced several positive cerebral blood flow effects in the frontal lobe, reversing some of the changes often seen with advanced age.

Another activity is becoming proficient in a second language, which has been associated with a 4.3 year delay in dementia diagnosis and symptoms. Although these kinds of cognitive lifestyle interventions may have a powerful impact on the brain, they are yet to be investigated in the context of clinical trials with dementia prevention outcomes. However, given the very low risk for adverse effects and the possible long-term benefits to mental health, it is reasonable for clinicians to recommend engaging in these kinds of activities, particularly after retirement.

The broader issue of what society expects from retirement may also need revision. A recent econometric study found a clear correlation between a nation’s mandated age of retirement and that population’s average level of memory proficiency in later life. Stopping work at a relatively younger age and switching off mentally is detrimental to long term cognitive function. Extending the retirement age indefinitely is, however, not a palatable personal or policy option. Rather, a whole-of-society approach to enriching the cognitive lifestyle of retirees is required. Suggestions for challenging the mind include undertaking formal education, learning new skills, teaching others and volunteerism.

Heart health and dementia prevention

Virtually every known cardiovascular (CV) risk factor also confers a heightened risk for dementia, including both Alzheimer’s disease and vascular dementia. Although each CV risk factor is likely to have its own specific way of contributing to neuronal loss and dysfunction, and hence dementia, the reason for a common risk is clear: neurons need a decent blood supply for proper brain function. In the same way that CV risk factors can lead to arteriosclerosis in the heart’s blood vessels, and ultimately myocardial infarction, similar pathology can affect both the large and small vessels of the brain (macro- and microcerebrovascular disease, respectively), and culminate in cerebral infarction.

Following conventional definitions, 25% to 30% of individuals will develop vascular dementia in the 12 months following a stroke. There is therefore an entirely logical and reasonable expectation that better prevention of stroke (both declared and silent) should help prevent vascular dementia. Moreover, there is ample evidence for the primary prevention of stroke based on the simple elimination of CV risk factors. For example, clinical trials show that better management of hypertension in the elderly reduces the risk for stroke by between 30% and 42%. On first principles, aggressive targeting of hypertension and other CV risk factors should help reduce the incidence of vascular dementia.

The relation between CV risk factors and Alzheimer dementia is more complex but is potentially equally rewarding from a primary prevention perspective. There is a growing awareness that the
classic distinction between Alzheimer and vascular dementia is problematic as the pathologies occur simultaneously in the brains of older individuals more often than each occurs alone.33,34 In the community, mixed dementia is therefore the most likely default aetiology, an interaction of both Alzheimer pathology and cerebrovascular disease.35,36

By better identifying and treating CV risk factors, GPs may be better able to prevent sporadic dementia in general. Hypertension, physical exercise and smoking are the CV risk factors suggested as being particularly promising heart health targets. GPs should discuss dementia prevention with patients in their forties and fifties, well before the age of usual symptom onset (see box).

Diagnose and manage hypertension

Several large long term epidemiological studies have noted that midlife hypertension is associated with a two- to threefold increase in dementia risk some 20 to 30 years later (including both Alzheimer and vascular dementia); furthermore, this association appears to be independent of other CV risk factors.37,38 Epidemiological links between hypertension in late life and dementia incidence are less consistent, and almost certainly confounded by the well described reduction in blood pressure in the years leading up to dementia diagnosis (often dropping to hypotensive levels).41

On the other hand, treatment of simple hypertension in the elderly (over 60 years of age) is the only medical intervention found so far to reduce the incidence of dementia (both Alzheimer and vascular) in a double-blind, placebo-controlled, randomised clinical trial (the Systolic Hypertension in Europe [Syst-Eur] trial).39 Interestingly, this protective and preventive effect against dementia became stronger after several years of open-label follow up.42

The Syst-Eur trial was unique for its open-label follow up.42 The working assumption is that the regimen found time and again to be effective for systemic illnesses such as coronary artery disease, arthritis, osteoporosis and pre-diabetes may also be effective for preventing cognitive dysfunction.43 This regimen is therefore considered the default recommendation, and consists of antihypertensive treatment,44 and highlights how these trials were primarily designed to assess cardiac and stroke outcomes, not dementia, and so employed very limited cognitive techniques. Further large-scale randomised controlled trials with dementia prevention as the primary outcome measure are urgently required.

There is a reasonable evidence base suggesting that enhanced blood pressure management in both midlife and late life can reduce dementia incidence.34 The link between hypertension and dementia is not commonly known in the community,44 and so represents an excellent opportunity for GPs to educate their patients, as well as help motivate better compliance for a condition that has notoriously low treatment adherence rates (see box).

Physical exercise

There is overwhelming basic science, epidemiological and clinical trials evidence that physical exercise is beneficial to brain health, particularly for older individuals.45-47 The mechanisms underlying this are complex, and include systemic adaptations related to cytokine response to inflammation, metabolic upregulation and increased cardiac output, as well as central changes related to improved cerebral blood flow and a whole spectrum of neuroplastic mechanisms.48

A recent large Australian clinical trial in individuals with mild cognitive impairment found that regular, self managed and moderate intensity aerobic exercise (mainly walking) significantly reduced the rate of cognitive decline, albeit with modest effect size.49 The precise dosage and pattern of physical exercise required for cognitive benefits is currently unclear. A reasonable working assumption is that the regimen found time and again to be effective for systemic illnesses such as coronary artery disease, arthritis, osteoporosis and pre-diabetes may also be effective for preventing cognitive dysfunction.50 This regimen is therefore considered the default recommendation, and consists of aerobic exercise:

- of moderate intensity (sufficient intensity that you could talk at the same time, but not sing)
- at least three times a week
- lasting 30 to 45 minutes per session.

The issue of whether progressive resistance or strength training is as effective as aerobic exercise for cognitive outcomes is wholly untested. Strength training stimulates many of the same anti-inflammatory and prometabolic pathways as aerobic exercise, and appears to be particularly effective for preventing diabetes.51 This may be especially relevant to dementia prevention because of emerging direct links between dementia risk and each of midlife diabetes and obesity.52,53 Further research is required to determine whether strength training alone or in combination with aerobic exercise is useful for preventing cognitive dysfunction in later life.

Smoking cessation

Despite some persistent urban myths to the contrary, epidemiological studies consistently link smoking and increased dementia risk. Furthermore, long-term cohort studies indicate that the risk in former smokers approaches, after several years from quitting, that of never smokers; so smoking may be an important modifiable risk factor.

Clinical trials of dementia prevention based on cessation of smoking are currently under design. Meanwhile, GPs can educate patients that apart from the well-known links between smoking and cardiac disease and cancer, smoking also increases the risk for dementia. In the long term, stopping smoking is likely to also reduce dementia risk.

Dietary advice – omega-3 fatty acids

No diet, nutrient or vitamin supplement has been shown in a randomised controlled trial to prevent the development of dementia. On the other hand, there is strong evidence that both omega-3 fatty acid supplementation and oily fish consumption (two or three times a week) reduce the rate of major cardiovascular events such as myocardial infarction.54 Given the close links referred to above, between vascular integrity and dementia, it is probable that long-term adherence to a Mediterranean diet (ie. mainly fish, fresh fruit and vegetables) will lower an individual’s risk for stroke, and may possibly help lower his or her risk for dementia.55 Oily fish include salmon, tuna, swordfish, mackerel and sardines.
Expectation management: Small gains, big impact

Dementia cannot be definitively prevented, and prevention in this area is a relative term. The evidence to date suggests that a multifactorial strategy targeting both cognitive lifestyle promotion and cardiac risk factor elimination (particularly hypertension) is likely to lower the risk of incident dementia compared with the status quo.

Accordingly, there are no guarantees that an individual will not develop dementia, but simply a series of recommendations on how to best lower a person’s odds of getting the disease. In reality this may mean an individual develops dementia at a later age than otherwise, or during this extended dementia free period dies naturally from another cause. Although this may appear a modest gain, the population and societal impacts could be enormous: for example, a five year delay in dementia presentation would translate to a 43% reduction in dementia prevalence.57

Conclusion

Dementia is becoming one of medicine’s most pressing issues, and there is a lot more that can be done in the primary care setting to help avert the forecast epidemic. Increased attention to cultivating an active cognitive lifestyle, particularly after retirement, accompanied by a greater focus on the elimination of cardiovascular risk factors in the 10 to 20 years leading up to retirement, are two simple and potentially powerful strategies to help prevent dementia.

GPs should take advantage of the deep seated fear of dementia in the community to foster positive behavioural change in their patients that may ultimately benefit both brain and body health.

FDA Accepts Adcock Ingram’s Research and Development Facility

The US Center for Drug Evaluation and Research of the Food and Drug Administration (FDA) has accepted Adcock Ingram’s (AI) Research and Development (R&D) facility in Johannesburg. The centre’s activities underwent FDA inspection in November 2011, and in August 2012 the FDA confirmed the acceptance classification of this facility.

One of the key outputs of the company’s R&D efforts is the timely development of critical medication, such as anti-retrovirals. AI’s R&D laboratory is adequately equipped to conduct research for liquid, semi-solid and solid oral dosage forms. It is also registered with SA’s Medicines Control Council as a current Good Manufacturing Practice facility.

The site is fitted with large environmentally controlled walk-in stability chambers, necessary for accelerated and long-term stability studies for finished pharmaceutical products in accordance with international guidelines.

The team of pharmacists and scientists at the site also develop and validate analytical methods for pharmaceutical products. Activities that are central to the facility include pre-formulation and formulation of a variety of dosage forms, stability studies and the manufacturing of laboratory-scale batches.

“AI’s R&D activities are focused on defining the best and most cost effective operations. We have invested a substantial amount on pharmaceutical and analytical research and development.” says CEO, Dr Jonathan Louw.

He continued, “FDA acceptance of AI’s facility is evidence of the quality of product and the processes that go into the manufacturing of our products. FDA approval is a prerequisite to accessing donor funding and being able to fulfil tenders in the rest of Africa.

“Acceptance by the FDA also serves as a stepping stone to ensuring global best practices are in place across all production sites. AI expects to continue medicine development at this facility.”

To achieve scientific and technical objectives, while maintaining the highest level of quality assurance and regulatory compliance, a comprehensive quality management system has been implemented. This allows feedback systems and processes, ensuring continuous improvement in the development and testing of pharmaceutical products.

AI is a leading SA pharmaceutical company. The company provides an extensive portfolio of branded and generic medicines, has a strong presence in over the counter brands, and is SA’s largest supplier of hospital and critical care products.